22.4 Clava™) The Complete Reference

i § t innovative features: packages and

i ines two of Java’s mos

!ms chapter exam iners for classes that are used to keep the class nj "

interfaces. Packages are confaine : e e el
space compartmentalized. For example, a package a y .

- ~irvour own package without concern that it W.ill
nzlrl?fle wtsﬁt{ ;Zrl:; 0¥her clasz namedy[,ist store_dbt?_ISewhere. Packa%ies. ire storgc_:lﬂ a
mcal ———r=rand are explicitly imported into new.class dfe ini f1cmsé = K
-— DTCVIOUS cham’e seen how methods define the inter ac]? ob e data i
- a class. Through the use of the interface k.eyword, Java allows you to fu yfa stract the
interface from its implementation. Using interface, you can spec1f§f a set of methods
which can be implemented by one or more classes. The 11.1te.rface, itself, does not
actually define any implementation. Although they are similar to abstract classes,
interfaces have an additional capability: A class can implement more than one
interface. By contrast, a class can only inherit a single superclass (abstract or
otherwise). | . \
 Packages and interfaces are two of the basic components of a Java program.'In
"; _ general, a Java source file can contain any (or all) of the following four internal parts: .

B A single package statement (optional)
| B Any number of import statements (optional)
i B A single public class declaration (required)
Any niémber of classes private to the package (optional)

Only one of these—the single public class declaration—has been used in the
examples so far. This chapter will explore the remaining parts.

L B X A e A A e o e B e B, WP 5 e M R B e 3

Packages e IR S

;; In the preceding chapters, the name of each exam
d name space. This means that a uni
name collisions. After a while, wit

ple class was taken from the same
que name had to be used for each class to avoid

hout some way to manage the name space, you
names for individual classes. You also need

; grammers fighting
class name. Or, imagine the entire Internet community arguing over who first name

a class “Espresso.”) Thankfull ;
. y,Java provides a mechanism for ‘tionine the class
Jjame space Into more manageable chunks. This mechanism j t}?artmﬁm%
_package is both a naming“and a visiBi: s the package.

_ a visibility control me i 5e5
inside a package that are not accessj <hanism. You can define o

o TS Members T ble by code outside that package. You can als
Wﬁa f mvs()urcsh are Onl\’ exposed to ot er members of ¢ CS’[m@ pack_ﬂ.ﬂr‘ \
IS El oV aSS:LS to have intimate knowledge of each other bt:t not expos¢

-

Scanned with CamScanner

Chapter 9: Packages and Interfaces '

pefining a Package

ckage is quite easy: simply include a package command as the first
Statement 1n a Java source file. Any classes TJeclared within that file witl betorgto the

opecified package. The package SEatement defines a name space in which classes are
ored. If you omit the package statement, the class HWM Tt
ackage, W ~h has no name. (This is why you Raven't had to worry about packages
Te the default package js fine for short, sample programs, it is

To create a pa

pefore nOW.
inadequate for real applications. Most of the time, you will define a package for .
our code.

This is the general form of the package statement:

package rkg;
tement creates 2

of the package. For examyple, the following sta
s

Hére, pkg is the na
ac o called MyPackage. /

I package MyPackage;)

ctories to store packages. For example, the .class files for

' } 2 classes you declare to be pa rt _(_u_f_My_I’_a_c_lgqgg_r]mgg_lg_g_ stored in a directory called”
Package. Remember that case is si gnificant, and the directory name must match the
package name exactly.
More than one file can include
simply specifies to which package
other classes in other files from being p
are spread across many files.
You can creatq a hierarch
name from the one above 1t by
package statement 1S shown here:

nt. The package statement
belong. It does not exclude
eal-world packages

the same package stateme
the classes defined in a file
art of that same package. Most 1

To do so, simply separate each package
5d The general form ofa multileveled

y of packages.
o —

use of a perl
ﬁ-—-—"“-—_—

package pkg1[.pkg2[-pkg31l;
'_-—-_"‘- '_’-—_-_‘_..-—'
A packége hierarchy must be reflected in the file system of your Java development

system. For example, a package declared as

I package java.awt. image;
gl ot g
Needs to be stored in java}awt/i mage, j ava\awt\image, or j ava:awt:image on your
NIX, Windows, or Macintosh file system, respectively. Be sure to choose your
S?Cka ge names carefully. You cannot rename a package without renaming the
rectory in which the classes are stored.

Scanned with CamScanner

226 Java™ 2: The Complete Reference

LASSPATH

i i ¢ raises an important
i directories. This raises o
i L w where to look for packages that - .

Finding Packages and C

i i m
As just explained, packages are mi
question: How does the Java run-hn:;e ?ir::rg;ngau“ e Form et o Nkl

: has two parts. ; ,
you create? The answer

: i ackage is in the Curren-
the current working directory as its starting Pomt. Thl_lsf lf ggzrfg:ﬁ?.%e kil phue ca?t
directory, or a subdirectory of the current directory, 1t vl;l Sl Al il
specify a directory path or paths by setting the CLASS

For example, consider the following package specification.

%
|| package MyPack;

In order for a program to find MyPack, one of two things l;nust be g:isrsltph‘:r'r ge
program is executed from a directory immedlatc_l_v above Myl a.c.k, or CL. E
must be set to include the path to MyPack. The first alternative 1s the easiest (and .
doesn’t require a change to CLASSPATH), but the second ﬂltL-‘l'l.lEltl\’L‘ !ets your
program find MyPack no matter what directory the program is in. Ultimately, the
choice is yours.

The easiest way to try the examples shown in this book is to simply create the
package directories below your current development directory, put the .class files into
the appropriate directories and then execute the programs from the development -~
directory. This is the approach assumed by the examples. TS i

A ShortPackage Example
ping the preceding discussion in mind, you can try this simple package:

// A simple package . o
package MyPack; -

class Balance {
double bal;

Balance (String n, double b) {

Name = n;

}

void show() {
if (bal<0) ;
System.out.print("

—=> my,

Scanned with CamScanner

0

System.out.printlin (hame '+ L

class\AccountBalance {
public static void main (String args[]) {
Balance current[] = new Balance[3];

current [0]
current[1]
current [2]

new Balance("K. J. Fielding", 123.23}
new Balance("Will Tell®,, 157.02):
new Balance ("Tom Jackson", -12.33);

1

for(int i=0; i<3; is+4) current[i].show();

.

EJ) . - i : -

Call this file AccountBalance.java, and put it in a directory called MyPack.
‘Next, compile the file. Make sure that the resulting .class file is also in the MyPack
directory. Then try executing the AccountBalance class, using the following command line:

I ja#a MyPack.AccountBalance

- Remember, you will need to be in the directory above MyPack when you execute this
ommand, or to have your CLASSPATH environmental variable set appropriately.
~ Asexplained, AccountBalance is now part of the package MyPack. This means that
itcannot be executed by itself. That is, you cannot use this command line:

I java AccountBalance

AccountBalange must be qualified with its package name.

S AR T AR R B A T R B L i 03 i R e et

EAccess ‘Protection

the Preceding chapters, you learned about various aspects df Java’s access control
mt?Chélm'sm and its access specifiers. For example, you already know that access to a

Vate membebr of a class is.granted only to other members of that class. Packages add
C 1. As you wi_l_l,&’eg, Java provides many levels of

~er dirers; :
on S :
%to allow fine-grained control over the visibility of variables and methods- ,

W“h ho
classes, subclasses, and packages. § _
J lasses and packages are both means of encapsulating : 1
(g scope of variables and methods. Packages act as containers for classes
4 C

and containing the name:i
an

Scanned with CamScanner

i { I'Jﬂl) ¥ T,

2 Jaya™ 2: Ine vomreoo

ata and code. The class is
tween classes and
members:

other subordinate package o
Java's smallest unit of abstra

ories O
packages Java addresses four cate

age

in the same pack
B Subclasses 11 | chkage

asses in the same
- kages
he same package nor subc

and protected, provide a variety of
d by these categories. Table 9-1 sums

" Non-subcl

B Subclasses in different pac lasses

@ Classes that are neither in t

rivate, public,

three access specifiers, p :
e of access require

ways to produce the many levels

i t‘l:‘;ul-?:}ifat}g Zi.cess control mechanism may seem complicated, we can .sunphfy itas
foumvswwereéawmng declared
private cannot be seen outside of its class. When a member does W
access specification, it iW Msame.
= This is the default access. If you want to allow an element to be seen outside

your current package, but only to classes that subclass your class directly, then declare
that element protected.

Table 9-1 applies only to members of classes. A class has only two possible access
levels: default and public. When a class is declared as public, it is accéssible by any

other code. If a class has default access, then it can only be accessed by other code
within its same package.

Priyatfa No modifier Protected Ifu‘ialic
Sameclass *Yes Yes Yes
Same package No Yes Yes' :
subclass 25 e e :
Same package No 4 N 2
_ Yes ‘

non- 1

n-subclass i Yes Yes
Different N >
package : Y
subclags , 7 b
Different - X -
package : —L—No——..""_ e e + 33
non-subclasg _ o EE

Scanned with CamScanner

Chapter 9: Packages and Interfaces 229

Access Example

fhe following examplie shows all combinations of the access control modifiers. This
 mple has two packages and five classes, Remember that the classes for the two
jifferent packages need to be stored in directories named after their respective
es—in this case, p1 and p2.
The source for the first package defines three classes: Protection, Derived, and
ePackage. '_I'he flrs_t class defines four int variables in each of the legal protection
- podes. The variable n 1s deClE{red with the default protection, n_pri is private, n_pro is
rotected, and n_pub is public.
P Fach subsequent class in this example will try to access the variables in an instance
of this class. The ll'nes that will not compile due to access restrictions are commented
out by use of the sn.lgle-h.ne comment //. Before each of these lines is a comment listing
-~ theplaces from which this level of protection would allow access.
- Thesecond class, Derived, is a subclass of Protection in the same package, p1. This
. orants Derived access to every variable in Protection except for n_pri, the private one.
' Thethird class, SamePackage, is not a subclass of Protection, but is in the same package
. andalso has access to all but n_pri.
. Thisis file Protection.java:

package pl;

public class.Protection {
int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

,bublic Protection() {
System.out.println("base constructor");
System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);
System.out .println("n_pro = " + n_pro).;
System.out .println("n_pub = " + n_pub) ;

This is file Derived.java:
DaCkage pl;

C i
lasg Derived extends Protection {
DGriVed(} {

N

Scanned with CamScanner

lava™ 2. 1y, Complete Reference

System.out.println("derived congtructor") ;
System.out.printin("n = " + n);

// class only
System.out.println{("n_pri = " + n_pri);

ystem.out.printin("n_pro = ¢ nLproj;
System.out .println("n_pub = " + n_pub);

This is file SamePackage.java:

package pl;

class SamePackage {
SamepPackage () {

Protection p = new Protection(} ;
System.out.println("same package constructor") ;

System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + par_pri) ;
System.out.println("nhpro = " + p.n_pro):
gystem.out.println{"n_pub = * 4+ p.n_pub):;

-

}

Following is the source code for the other pack
p2 cover the other two conditions which
Protection2, is a subclass of pl.Protectio

age, p2. The two classes defined in

are affected by access control. The first class,

. n. This grants access to all of p1 Protection’s

(‘;z; ;ﬁlte;riﬁifit fOFRILprl (Eecause itis private) and n, the variable deI:lared with the
on. Remember, the default on] allows access fr ithi or

the package, not extra-package subcla : o within i

; sses. Finally, the class OtherP ccess
to only one variable, n_ pub hi e kel erfackage hasa
This is file Protecti-p » which was declared public. |

Dn2.javi/

clase Probeetions €Xtends p1 Protection {
: n

package p2;

Scanned with CamScanner

|
|
i
i
|
|
E

e | .

Chapter 9: - :Packages and Interfaces _—

Protection2 () ({

System.out.println("derived other package constructor");

// class or package only
// System.out.println("n = *

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

This is file OtherPackage.java:

package p2;
class OtherPackage ({
OtherPackage () {
pl.Protection p = new pl.Protection():;
System.out.println{"other package constructor");

/! class or package only
// System.out.println("n = " + p.n);

// class only

System.out.println("n_pri = " + p.n_pri);

- ¢lass, subclass or-package only

System.out.println("n_pro

M p'ﬁ-pro):‘ O e A -

- -

[

" System.out.println("n_pub

) -

...'_"._ - p.n_-pub) : o e

L]

k. | - . - +
. .

-

. If you wish to try these two packages, here are two test files you can use. The one
Package p1 is shown here: -

// Demo package pl. ‘ y
Dackage pl:

Scanned with CamScanner

lete Reference®

;] Instantiate the various classes 1n pl.

ublic class pemo { |
: atic void main(String args(]) {

public st 2 :
protection obl = new ProtecLlon{},
perived ob2 = new perived() i
= new samePackage () 7

camePackage ob3 =

The test file for p2 is shown next:

// Demo package p2.
package D23

// Instantiate the various classes in p2.

public class Demo {
public static void main(String args[]) {

Protection2 obl = new Protection2 () ;
OtherPackage ob2 = new OtherPackage () ;

T AT AL R R R R

ot e A e e R S B T AR B O B S

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse
classes from each other, it is easy to see why all of the built-in Java classes are stored in
packages. There are no core Java classes in the unnamed default package; all of the
standard classes are stored in some named package. Since classes within packages
must be Iflullv qualified with their package name or nérriéSL_i_t__c_g_gl_c_l_lgecome tedious to
=thpe in the long dot—§eparated ackage path name for every class you want to use.
or this reason, Java includes the impor¥statement to brin in cla 4.,-9.
Byl : E g certain classes, or entf
~packages, nto visibility. Once i d e 3
5 e y. Qnce imported, a class can be referred to direcily, using.only
; S rlame.l e 1mport statement is a convenience to t ‘is t \"
technically needegd to wri g
Rnical egl to write 3 complgte Java program. If you are going to refer toa

few dozen classes In your application, however, the import statement will Save a lot

of typing.
In a Java source file, import stat : _- .-
< S ’ ements occur im i ' § U e
statement (if it exists) and before an S defini mnr;ledlatetly' following the P“ktge
m tement: - Lhls1erthe genera fo

import pkg1[.pkg2].(classname | *);

Scanned with CamScanner

viapter 9: Packaﬂes\@._l.llw“ b

‘*g LTS

Here, pkgl is the name of a top-level 1y 3 -

'———r—ra"—'—' l’mkﬂw? is the name f iy i
EELFG }inSf} e tht;(oute;{ ?packwed b kﬁ?:nggr;gﬁ% s

¢ depth of @ package hierarchy, except __:.U. — ; -ulm.l bon,
s ify either an explicit classnane Pt that imposed by the file system. Finally, o K5

. ‘t'll‘ . H 1 : ’
LI import the entire ﬁﬁiﬁ%{(), which indicates that the Java cOmpje,
sho ode fragment sh orms in use:tin&
import java.util.Date; E_ 1
import java.io.*; { fi
& 2
¢ e

star form may increase bt £ —
Thf—’k ’ e‘f o Hu'sjr " Lﬂjtt t;f]:up:lnhgn time—especially if you import several large
packages. CAsOm 1L1s a good idea to explicitly name the classes that you want

) » r than importi - %
- touserathe .” nporting whole packages. However, the star form has absolutely 3
no effect on the run-time performance or size of your classes. 1

Allof the standard Java classes included with Java are stored in a package called
java. The basic language functions are stored in a package inside of the java%ﬁckﬁge ' b
alled java.lang. Normally, you have to import every package or class that you want X
touse, but since’Java is useless without much of the functionality in java.lang, it is i
implicitly imported by the compiler for all programs. This is equivalent to the following

line being at the top of all of your programs:

- &

/
.A/.(_;,L/-L ' [ﬂt » \-Q!') v
import Jeva.lang.*;

lf a class with the same name exists in two different packages that you import
- ing the star form, the compiler will remain silent, unless you try to use one of the

 tasses. In that case, you will get a compile-time error and have to explicitly name
 teclass specifying its package.
Any place you use a class name, you can use its fully qualified name, which

includes its full package hierarchy. For example, this fragment uses an import

Satement:

Anport java.util.*;
W Slass MyDate extends Date f
i B

g

ment looks like this:

i
Il
|

Tﬁﬂsame example without the import state

3 . i1 Date{
?1“58 MyDate extends JaVa°uul
i

Scanned with CamScanner

va™ 2: The complete Reference

Rt , ly those items with;j

able 9-1, when a package is imported, only th i 1IN the
| :s sh:nwn :EdT;:;“b“C will be available to non-subclasses jn the Importing coq.
ackage decla want the Balance class of the package MyPack shown earligp , ..

\C v if you s tﬂ ‘
i‘:l“‘:l:;":l;lea stzmd-alone class for general use outside of MyPack, then you wy) ne:;?‘_
ydeclare i‘t as public and put it into its own file,as shown here: i 6f) 11

e

package MyPack;

/* Now, the Balance class, its constructor, and its
show() method are public. This means that they can
be used by non-subclass code outside their package.

Lt

public class Balance ({

String name;
double bal;

public Balance(String n, double b) {
name .= n;
bal = b;

public void show() {

if (bal<0)
System.out.print(“-~> Y |
System.out.println(name + "y

to make yge of the Balance class:

you may use Balance
Uctor, *./

Scanned with CamScanner

E o

Chapter 9: Packages and Interfaces m'

test.show(}; // you may also call show()

eriment, remove the public specifier from the Balance class and then try

As an exp - .
tBalance. As explained, errors will result. i . oS

compiling Tes
: ' = e-,wﬂ-w,;,z-ﬁ»m&-‘-—'m. a—— - P

-
R arvr A

I L e e e W

’f@".fv.,,:g-:,,;“__‘_ i

Jinterfaces . . ==
| Ugin%he k%vword interfac can full abstracta class’ interface from its o
ﬁﬁmﬁf“ez you can specify what a claS_Szn,lEL‘.’P, but not how _.

M " r,
are syntactically similar to classes, but they lack instance variables,

ifdoes it. Interfaces e
that you can

mﬂwds are declared without any body. In practice, this means

Tefine interfaces ~Tnich don tenake assumptions about how they are implemented.__‘,

Once it is def'gugd. any number of classes can implement an interface. Also, oné class— ¢

can implement any number of interfaces. - . i #.
To implement an interface, a class must create the complete set of methods defineds

by the interface. However, each class is free to determine the details of its own

implementation. By providing the interface keyw ord, Java allows you to fully utilize

the “one interface, multiple methods” aspecfmn%phism;

Interfaces are designed to support dynamic method resolution at run tjmg
Normally, in order for a method to be called from one lass to another, both classes
need to be present at compile time so the Java compiler can check to ensure that the
method signatures are compatible. This requirement by itself makes for a static and
nonextensible classing environment. Inevitably in a system like this, functionality gets . '
pushed up higher and higher in the class hierarchy so that the mechanisms will be .
available to more and more subclasses. Interfaces are designed to avoid this problem.
T%‘e}’ disconnect the definition of a method or set of methods from the inheritance
hierarchy. Since interfaces are in a ‘gli_fferent hierarchy from classes, it is possible for .

;‘;5585 that are unrelated in terms *f the class hierarchy to implement the same
erface. This is where the real power of interfaces is realized.

""""

\‘ I es add most of the functionality that is required for many applications which
would normally resort to using multiple inheritance ina language such ”S——j‘c o

Degi.: -
®fining an Interface

An ing is defi Thisis Lintertace ‘
~terface is defined much like a claSS.MH?nﬂa—l form of an interface 4
“Cfess.if\.[e_;face‘ﬁame { | f

:ﬁiurn-type method-namel(parameter-list); 0O
urn-type method-name2(parameter-list); [’ 4

type final-varnamel = value;

.

e —

Scanned with CamScanner

3 ™=

~Java™ 2. 1pe Complete Reference

type final-varname2 = value;

// LR
return-type method-nameN(parameter-list);
type final-varnameN = value; -

Here, access is either public or not used. When no access specifier is included, then

default access results, and the interface is only available to othef embers of tip

Package in which tis declared gWhen it is declared as public, the interface can be used
by any other code. name is the nathe of the interface, and can be any valididenfif

N“oﬁce that the methods which are declared have no bodies. They end with a Se\g?olon
_after the paramgter list, They are, essentiﬁwhﬂmmm%fwh
implementation of any method specified within an interfacd. Each class that includes -
an interface must implementall of the method$. = ———« == e v 7

Varighles can be declared inside of interface declarations. i v final

tatic, meaning they cannot be changed by the implementing class. _ must alsy
e initialized with a constant value. Allﬂamcml_swma%m“
e interface, itself i lared as public. ~

Here is an example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.
i ’)
interﬁace Callback {
void callback(int param) ;
}

mplementing Interfaces

Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and
then create the methods defined by the interface. The general form of a class that

includes the implements clause looks like this: r B

access class classname [extends superclass] /
; " [implements interface [, interface...]] { ,
1/ / class-body ' ' ;

. - . . . A
Here, access is either public or not used. If a class implements more than one interfa®

the interfaces are separated with a comma,If a class implements two interfaces that _

.E_eclare the same method, then the same method will be used by clients of either

interface. The methods that implement an interface must be déclared public. "Also, ¢

type signature of the implementing methGd must matctrexactly the fype signatu’
mpecified in the interface definition,

Scanned with CamScanner

V

Chapter 9: Packages and Interfaces = 239

Here is small example class that implements the Callback interface shown earlier,
1ass client implements Callback {
2 ;!slmpleﬁént callback's interface
public void callback(int p) 8
system.out.println{"callback called with " + Dp);
} "

) R

Notice that callback() is declared using the public access spegifier.

When you implement an interface method, it must be declared as public.

ftis both permissible and common for classes that implement interfaces to define -
additional mernbers of their own. For example, the following version of Client
implements callback() and adds the method nonIfaceMeth(): :

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) { /
_System.out.println("callbac called with " + p);

}

void nonIfaceMeth() {
System.out .println("Classes that implement interfaces " +
"may also define other members, too.");

Accessing Implementations Through Interface References
Youcan declare variables as object references that use an interfaca Yather than a class
& -Any instance of any class that implements the declared interface can be referred
Y such a variable. When you call a method through one of these references, the
b Thit version will be called based on the actual instance of the interface being referred
dl:'ﬂat:ils one of the key features of interfaces. The method to be executed is looked up
ety dga]ly at run time; allowing classes to b created later than the code which calls
bk, on th?m' The calling code can cﬁhspatch th.rm.lgl} an interface without having
fren. anything about the “callee.” This process 1 similar to using a superclass
Ice to access a subclass object, as described in Chapter 8.

Scanned with CamScanner

238 Java™ 2: The Complete Reference

B ine i jonifi ;
| Because dynamic lookup of a method at run time incurs a s:gmf;cafnt 01 erh?ad when
-_l rmupnrcd‘wffh tHie normal neethod invocation in Java, you should be careful not to yq,
interfaces casually in performance-critical code.

The following example calls the callback() method via an interface reference
variable:

class TestIface {
public static void main(String args([]) {
Callback ¢ = new Client();

c.callback(42); i il
}

The output of this program is shown here:
callback called With,42i_J

Notice that variable ¢ is declared to be of the interface type Callback, yet it was
assigned an instance of Client. Although c can be used to access the callback() _
method, it cannot access any other members of the Client class. An interface reference
variable only has knowledge of the methods declared by its interface declaration.
Thus, ¢ could not be used to access nonlfaceMeth() since it is defined by Client but
not Callback. '

While the preceding example shows, mechanically,
variable can access an implementation object, it does n
power of such a reference. To
of Callback, shown here:

how an interface reference
ot demonstrate the polymorphic
sample this usage, first create the second implementation

// Another implementation

of Callback.
cla

£ AnotherClient implements Callback {
/7 Implement Callback's interface
public void eallback(int py- (.

zSystem.out.println("Anothbr'version of callback");
e . ,
; ujatem.out.przntln{"p Squared is " 4 (p*p)) ;

Scanned with CamScanner

._':- “"'1,1‘ »
L
H
1
(|

Chapter 9: Packages and Interfaces

AnotherClient ob = new AnotherClient();

c.callpack(42):

4 ¢ OBy (/' & BOW refers to AnotherClient object

C_Callback(42);

The output from this program is shown here:

- callback called with 42
another version of callback

D squared is 1764

e, the version of callback() that is called is determined by the type of

Asyou can e e

" + that ¢ refers to at run time. While this is a very simple example, yo
another, more practical one shortly.

artial Implementations |
ll:a dass includes an interface but does not fully implement the methods defined by

Wﬂ that class must be declared as abstract. For example:)

.dmtract class Incomplete implements Callback {

int a, b;
void show() {
System.out.println(a + " " + b);
}
7

}

plement callback() and must be declared as

Here, tim
QS e Incompletexioesno lete must implement callback() or be declared

stract, Any class that inherits Incomp
bstract itself, "

App"'"g Interfaces

cl‘:‘:’Jiderstand the power of interfaces, let's look at a more practical example. In earlier

Pterg led Stack that implemented a simple fixed-size stack. i
},{h:egeveg?;lef: ;ﬁéoizi; :::;&; Ctzlimplement a stack. For example, the stacl'c can bg of a
b Size or it can be "growable."’ The stack can al.so. be held in an array, a linked list,
sta’"ary tree, and so on. No matter how the stack is implemented, the interface to the

B TeMains the same. That is, the methods push() and pop() define the interface to

ckind ependently of the details of the implementation. Because the interface toa

Scanned with CamScanner

Y

ava™ 2: The Complete Reference

tack is separate from its implementation, it is easy to define a stack interface, leaving ;
> each implementation to define the specifics. Let’s look at two cxamPl?S'

First, here is the interface that defines an integer stack. Put this in a file called
ntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack ({
void push(int item); // store an item
int pop(); // retrieve an item
}

The following program creates a class called FixedStack that implements a
ixed-length version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {

private int stckl([]:

private int tos;

// allocate and initialize stack
FixedStack(int size) {

stck' = new int[size];

tos = -1;

*// Push an item onto the stack
public void push(int item) {
if(tos==stck.length-1) // use length member
System.out.println("Stack is full.");
else
stck++tos] = item;

}

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow."):
. return 0;
}
else

return stckl[tos--];.

i

Scanned with CamScanner

Yy

Chaptler 9:

1PTast {

€

Packages and Interfa

ntack

i+s) mystackl.push(i);

Cl:";i,;”(_- gratic void main(8tring args()) !
sy xedbtack mystackl « new Fixedstack(3)/
pixﬁdﬁhafk mystack?2 = new FixedStack(8);
// push asome numbers onto the
for (int i=0; i«5;
for (int {=0; i<8; i+4) mystack2.push(i);

// pop t ho
Sy{;tf,—:.’i.ﬂu'. .
{=0;

¢ Fuhsz L)

i

for(int

. W -
SyaLem. o

System. ot

i~

e i A
1 =Ur & % 4%}

srintln(mystack?

‘
J
L

fﬁrfiﬁt

syﬂ-’.":.”l,*’wﬂ. &

Following is another impleme
we of the same interface definition.
with an initial length. If this initial length is
size. Each time more room is needed, the size

/] Wmplement a "growable’ stack.
clage Dynctack implements IntStack
private int stckl(]:
private int too;

// allocate and initialize gtack
DynStack (int size) |

stek = new int([eizel;

tog = -1;
}

!/ Push an item onto the stack

Public void push(int item) f
[/ i sltack is full; allocat
1f(tog==stck.length-1) |

int templ] = new int[stck.
f"’r(int :'l.zo;

h

jestck.length; i+4) templi]

se numbers off the stack
println(®Stack in mystackl:*);

ut.print]nfnyctackl.pop(}):

.println(®stack in mystack2:");

popl)ii

ntation of IntStack that creates a dynamic stack by

In this implementation, each stack is
exceeded, then the stack is increased in

constructed

of the stack is doubled.

{

e a larger ‘stack

length * 2]; // double size

stekiil;

L —————————

Scanned with CamScanner

lavam ». The Complete Reference

stck = temp;
stck[44tos] = item;
}

else

stck(++tos] = item;

// Pop an item from the stack
public int pop() {

1f(tos < 0) {

System.out.println("Stack underflow.");
return 0;

}

else

return stck(tos--];

class IFTest2 {

public static void main(String args(]) { y i
DynStack mystackl = new DynStack(5) ;
DynStack mystack2 = new DynStack(8) ;

o
// these loops cause each stack to grow na
for(int'i=0: 1<12; i44) mystackl.push(i);
for(int i=0; <20 " L) mystackE.push(i);

System.out.println("

: Stack in mystackl:");
for(int i=0; i<12; i++4)
System.out.println(mystackl.pop());

Syst?m.out.println("Stack in mystack2:v) .
for (int i=0; 1<20; 1+44) |
System.out. i
: pr1nt1n(mystack2.p0p()):
}
Th

Scanned with CamScanner

=
4

Chapter 9: Packages and Interfaces

n interface variable and

~rpale a y

3 Ll-ceﬂs stacks through it,
acce”

¥

: gS IFTest3 { ' :

Clahblic static void main(String args(]) ({
g

IntStaCk mystack; // create an interface reference variable
Dyrstack ds = new DynStack(5);
FixedStack fs = new FixedStack(8);

o |
%
n:
1}
e
b
3
e
o
o
¥ m

-nystaCk - ds; // load dynamic stack
/; push some numbers onto the stack

for (int 1=0:; 1<12; i++) mystack.push(i);
L

—vstack = £s; // load fixed stack
iy < ° = i
for(int 1=0; i<8; i+4+) mystack.push(i);

myscack = CGS
y . | .
cystem.out.println("values in dynamic stack:");
__,"..L..'-.".n. Olie v bl =
for (int i=0; i<12; i++)
for(in
svetem.out.println(mystack.pop()):
mystack = Is; | "
System.out println("values 1n fixed stack:");
for(int i=0; 1<8; i++)
cV:*:t.c;:.orintln(mystack,pop()};

Inthis program, mystack is a reference to the IntStack interface. Thus,. whlen it rt:f(—.;g;o

§s,it uses the Vérsions of push() and pop() defined sy tl1e(t))c);ni§taegk h:;nl}; if;?g:;k !
' in :

When it refers to fs, it uses the versions of push() and popt} €€= :

Asexplained, these determinations are made at run time. Accessm_g n;u}ttgie bt

""‘Plementati‘ons of an interface through an interface reference variable is the

Powerful way that Java achieves run-time polymorphism.

hﬂahles in Interfaces

Toucan e interfaces to import shared constants into mu.lt.ipye classes bi; s;;l:fciy
ded"ing an interface that contains variables which are initialized to”t.he It:e;e nt” the
lues, When you include that interface in a class (that is, when yotr} h!milsj il
m."fate), all of those variable names will be in scope as constants. lst'lrlfS panh
ting 3 header file in C/C++ to create a large number of #del’inecl:ll C:)ir:]il‘udes cuch an
iny, - 2tions. If an interface contains no methods, then any class tha

"erfacQ doesn’t actuall)" imp]ement anything. Itis

: cciha
as if that class were importing th

Scanned with CamScanner

. N

Java™ 2: The Complete Reference

constant variables into the class name space as final variables. The next example g,
i . ",
this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants (
int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3
int SOON = 4;
int NEVER = S;

[

class Question implements SharedConstants ({
Random rand = new Random() ;

int ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 30)
return NO; // 30%
else if (prcb < 60)
return YES; // 30%
else if (prob < 75)
return LATER; // 15%
else if (prob < 98)
return SOON; [l 13%
elce
return NEVER; /] 2%
}

Class AskMe implements SharedConstants {
stat%c void answer (int result) ({
Switch(result) {
casge NO:
System, out
break;
case YES.

-Println("Nov);

Sy i,
Jr:stem.c:mt.prn.ntlln("Yes"') ;

Scanned with CamScanner

s

Chapter 9: Packages and Interfaces ;

pbreaki
case MAYBE :
System.out.println(“Mayben),

pbreaki
case LATER:
system.out.println("Later");

break;

case SOON:
system.out.println{"Soon"};

breaki
case NEVER:
system.out.println("Never“);

break:

)

public static void main(String argsl[]) {
Question g = new Question() ;
answer (g.ask())
answer (g.ask ()
answer (g.ask(
answer (g.ask(

[

e of one of Java’s standard classes: Random. This

dass provides pseudorandom numbers. It contains several methods which allow you

1o obtain random numbers in the form required by your program. In this example, the

method nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

Shahlﬂ‘is sample program, the two classes, Question and AskMe, both implement the
efi:;dC0n§tants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are

nr.mhd-_InSlde each class, the code refers to these constants as if each class had defined

erited them directly. Here is the output of a sample run of this program. Note

the results are different each time it is run.

Notice that this program makes us

Later

SOOn
No

Scanned with CamScanner

Interfaces Can Be Extended

One interface can inherit another by use of the keywor

for inheriting classes. When a class implement
plementations for a

ample:

d extends. The syntax is the
s an interface that inherits

same as . e
another interface, it must provide im 11 methods defmed within

the interface inheritance chain. Following is an ex

// One interface can extend another.
interface A {

void methl();

void meth2():
}

// B now includes methl() and meth2() -- it adds meth3 ().

interface B extends A ({
void meth3();

// This class must implement all of A and B
class MyClass implements B {

public void methl () {
System.out.println("Implement methl().");

public void meth2() {
System.out.println("Implement meth2().");

}

public void meth3 () {
System.out.println("Implement meth3().");

}

class IFExtend ({ _
e

public gtati]
My(_‘i static void main(String arg(]) {
a88 ob = new MyClass () ;

Scanned with CamScanner

Chapter 9: Packages and Interfaces

Ob,methl ()i
ob_methz ()7
Ob-NEthB ()i

Asan experiment you might want to try removing the implementation for meth1()

: 1ass. This will cause a compile-time error. As stated earlier, any class that
. Jements an interface must implement all methods defined by that interface,
!mcll)uding any that are inherited from other interfaces.
A Although the examples we’ve included in this book do not make frequent use of

ckages or interfaces, both of these tools are an important part of the Java programming
environment. Virtually all real programs and applets that you write in Java will be
ontained within packages. A number will probably implement interfaces as well.
[tisimportant, therefore, that you be comfortable with their usage.

Scanned with CamScanner

o
Ve]
3
o
T
T
e
»y f ¥ e
o 2
e
" .-.". . L
Y Mgy ‘o
2 5
U .
lag | oty -
Bl - |
5
R]
e o oy
‘!r 3 ks 4 i
P e
e
.r-". b 1
;]g LA

